U.S. Pipelines and Logistics BP Pipelines (North America) nc. 30 S. Wacker Drive, 9th Floor Chicago, Illinois 60606 November 8, 2016 Alan E. Rathbun Pipeline Safety Director Washington Utilities and Transportation Commission 1300 S. Evergreen Park Drive S.W. Olympia, WA 98504-7250 RE: 2016 Hazardous Liquid Standard Inspection - BP Cherry Point - (Insp. No. 6755) Dear Mr. Rathbun, This letter is in response to the Washington Utilities and Transportation Commission noted probable violations and area of concern dated October 6, 2016, and received by BP on October 13, 2016. A hazardous liquid standard inspection was conducted from August 22 to 24, 2016 of BP Cherry Point's 24-inch crude line and 6-inch butane line. The inspection included a records review and inspection of the pipeline facilities. For ease of response, the probable violations, area of concern and WUTC's finding(s) are restated below in italics and followed by BP's response. #### **Probable Violations** #### 1. 49 CFR§195.589 What corrosion control information do I have to maintain? (c) You must maintain a record of each analysis, check, demonstration, examination, inspection, investigation, review, survey and test required by this subpart in sufficient detail to demonstrate the adequacy of corrosion control measures or that corrosion requiring control measures does not exist. You must retain these records for at least 5 years, except that record related to Secs. 195.569, 195.573(a) and (b) and 195.579(b)(3) and (c) must be retained for as long as the pipeline remains in service. #### Finding(s): During field inspection, the cathodic protection specialist for BP was asked if the multimeter and copper-copper sulfate half cell had been calibrated per manufacturer's recommendation and BP's OMER. The multimeter was calibrated however, BP stated they do not record the calibration of the half cells. They stated they use a reference cell to calibrate the half cell. In checking BP's OMER 195.551, it does not specifically require the half cell to be calibrated. This is a concern as BP has no way of confirming the accuracy of it half cells if they have no record of calibration. The code requires BP to record each analysis, check, test... to demonstrate the adequacy of corrosion control. The calibration of half cells should be recorded and maintained for 5 years. #### **BP Response:** BP agrees that test equipment which can be calibrated shall have a record of calibration, particularly a digital multimeter (DMM) that displays pipe-to-soil potential readings. However, BP respectfully disagrees with the finding of probable violation since a record of calibration for reference half-cells is a misnomer in that a calibration cannot be performed. A half-cell is not a measurement device that can be calibrated. BP has verified that there is no mention of half-cell calibration in either NACE RP0169-2007, Standard Practice, "Control of External Corrosion on Underground or Submerged Metallic Piping Systems" or NACE TM0497-2012, Appendix A, Standard Test Method, "Measurement Techniques Related to Criteria for CP on Underground or Submerged Metallic Piping Systems", and considers half-cells as work equipment that is checked frequently. Half-cells are an extension of the test leads that enable a connection to ground which completes a circuit to facilitate a pipe-to-soil potential measurement. The test leads and half-cells are routinely checked for proper operation prior to use by BP corrosion personnel to assure equipment is functional and fit for use. BP's corrosion personnel are qualified in accordance with its Operator Qualification (OQ) Program and are also credentialed through the National Association of Corrosion Engineers (NACE). These qualifications and credentials are indicative of competency and demonstrate knowledge and proficiency elements that cover theoretical and practical knowledge including a thorough understanding of the associated work equipment and its functionality. As BP's cathodic protection procedures in OMER do not currently describe its established practice of validating work equipment fitness prior to use, an amendment to procedures to add half-cell checks will be made in OMER Book 1, Procedure P-195.551, Appendix A - Cathodic Protection Quality Assurance Annual Surveys. The "Equipment" section will be revised to add the statement: "Work equipment including meter test leads and half-cell reference electrodes are checked for proper function prior to use and either replaced or cleaned and recharged, as necessary." #### 2. 49 CFR §195.440 Public awareness (b) The operator's program must follow the general program recommendations of API RP 1162 and assess the unique attributes and characteristics of the operator's pipeline and facilities. #### API RP 1162 4.4.1 Priority to Protect Life The operator's key messages to emergency officials should emphasize that public safety and environmental protection are the top priorities in any pipeline emergency response. #### Finding(s): It was noted the BP's (BP contracts with Paradigm for pamphlet and message content) Pamphlet for Emergency Response and Public Officials, page 5, stated that protecting people first, then property is a priority. However, this message was on page 5 of the pamphlet and well down the list of bulleted messages. It was not bolded not did it stand out in any way as the "top priority" message. As required in RP 1162 4.4.1, this message must be emphasized in educating emergency officials about the response from pipeline personnel. It does not appear to be emphasized in the materials reviewed. #### **BP Response:** BP has attached additional information that was not reviewed at the time of the inspection, including a fact sheet (also referred to as the Operator page) which acts as a cover page in accompanying the 8-page Emergency Official's brochure (which was reviewed). The Operator page is attached to the Emergency Official's brochure and is enclosed for your review and reference. The safety messages are highlighted in these materials, and the Operator page also states the priority of life and property in case of an emergency. This Operator page covers all Ferndale area pipeline systems (butane, crude oil, natural gas) operated out of BP's Tulsa Control Center. BP utilizes a collaborative approach through Paradigm as the WUTC has noted, and the mailing materials are reviewed by focus groups including emergency responders that review and provide feedback on materials which are continually being updated. The messaging order has been focus group tested in 2015 and there was no feedback on reordering the message. Also, content within the mailing is placed in an order that emphasizes readability of the intended stakeholder audience. BP will take this input into advisement for future mailings and will consider with other feedback received. In addition, BP participates annually in the Pipeline Association for Public Awareness (PAPA) program targeting Emergency Responders, which is a supplemental program aimed at further engagement in reaching the emergency response community. The 2016 program was completed in September, and the 46-page booklet is also enclosed for your review and reference. At the time of the inspection, this information was not available but further demonstrates that there are a number of methods used to engage emergency responders. The safety messages are highlighted for your convenience in this booklet which also states numerous times the priority to protect people, property, and the environment. Please see the Introduction page (page 3), second and forth paragraphs, as well as pages 18, 22, and 28 that also reinforce the message that the protection of life, property, and the environment is always the highest priority. This booklet is distributed widely to emergency responders (fire departments, law enforcement, LEPCs) throughout Whatcom County including the communities of Bellingham, Blaine, Birch Bay, Custer, and Ferndale. In light of the above new and additional information, BP respectfully disagrees with the finding of probable violation as the priority message is stated multiple times and not missing in the mailings. Further, RP 1162 4.4.1 terminology states "should" emphasize, which is, according to the RP document (Glossary of Terms), understood to mean "recommended", which BP believes has appropriately taken into account. #### **AREA OF CONCERN:** #### 1. 49 CFR §195.226 Construction records A complete record that shows the following must be maintained by the involved for the life of each pipeline facility: (e) The location of each overhead crossing. #### Finding(s): During review of the as-builts (BP refers to them as "line" drawings) for both the 24" crude line (1970) and the 6" butane line (1986) overhead lines (power, phone, etc.) were not noted on the drawings. 49 CFR §195.266(e) specifically requires these lines to be shown. As both of these lines are post code, this information should be shown on the drawings. However, it is not known what overhead lines existed when the original construction occurred. BP need to locate and identify the overhead lines and put them on their maps. #### **BP Response:** BP respectfully disagrees that the regulatory reference in 49 CFR §195.266(e) refers to overhead lines of third parties (power, phone, etc.), and believes this citation refers to overhead crossings of its pipeline system (i.e. where the pipeline itself is located overhead), and not "overhead lines" of other utility crossings. The items in paragraph §195.266 that pertain to infrastructure crossings of others include items (c) The location of each crossing of another pipeline and (d) The location of each buried utility crossing, but not (e) The location of each overhead crossing. Recent PHMSA enforcement matters involving another pipeline operator confirm this reference to an overhead crossing on its pipeline. BP will further discuss with WUTC Staff the item
noted in the Report that requires clarification at an upcoming face-to-face meeting, and looks forward to working cooperatively with WUTC Staff to resolve these matters. Please contact me at 331-702-4292 if you wish to discuss any of these items further. Sincerely, David O. Barnes, P. E. Dad Barn **DOT Compliance Manager** BP Pipelines (North America) Inc. Enclosures: C Operator page with Emergency Official's Brochure Pipeline Emergency Response Guidelines #### **EMERGENCY NUMBER: 800-548-6482** # About BP Pipelines (North America), Inc. - Ferndale System BP Pipelines (North America), Inc., operator of the Ferndale System, is headquartered in Naperville, IL. BP's core and joint venture pipeline operations span 18 states and are managed from pipeline control centers in Oklahoma and Washington. Altogether, BP Pipelines North America owns or operates 5,000 miles of pipeline. And holds joint venture interest in various pipeline systems, which are operated by third parties. ## What does BP Pipelines (North America), Inc. do if a leak occurs? To prepare for the event of a leak, pipeline companies regularly communicate, plan and train with local emergency responders. Upon the notification of an incident or leak the pipeline company will immediately dispatch trained personnel to assist emergency responders. Pipeline operators and emergency responders are trained to protect life, property and facilities in the case of an emergency. Pipeline operators will also take steps to minimize the amount of product that leaks out and to isolate the pipeline emergency. #### Maintaining safety and integrity of pipelines BP Pipelines (North America), Inc. invests significant time and capital maintaining the quality and integrity of their pipeline systems. Most active pipelines are monitored 24 hours a day via manned control centers. BP Pipelines (North America), Inc. also utilizes aerial surveillance and/or on-ground observers to identify potential dangers. Control center personnel continually monitor the pipeline system and assess changes in pressure and flow. They notify field personnel if there is a possibility of a leak. Automatic shut-off valves are sometimes utilized to isolate a leak. #### How to get additional information For additional information for BP Pipelines (North America), Inc. go to www.bppipelines.com or contact the BP Pipelines (North America), Inc. Damage Prevention Standards Coordinator @ 918-660-4360 (Monday - Friday: 7:30am - 4:30pm (CST)). #### PRODUCTS TRANSPORTED | PRODUCTS | TRANSPORTED | IN YOUR | AREA | |-----------------|--------------------|---------|-------------| | | | | | | PRODUCT | | LEAK TYPE | VAPORS | | | |---|---|--|--|--|--| | HIGHLY VOLATILE LIQUIDS
[SUCH AS: BUTANE,
PROPANE, ETHANE,
PROPYLENE, AND
NATURAL GAS LIQUIDS
(NGL)] | | Gas | Initially heavier than air, spread along ground and may travel to source of ignition and flash back. Product is colorless, tasteless and odorless. | | | | HEALTH
HAZARDS | | | | | | | HAZARDOUS LIQUIDS
[SUCH AS: CRUDE OIL,
DIESEL FUEL, JET FUEL,
GASOLINE, AND OTHER
REFINED PRODUCTS] | | Liquid | Initially heavier than air and spread along ground and collect in low or confined areas. Vapors may travel to source of ignition and flash back. Explosion hazards indoors, outdoors or in sewers. | | | | HEALTH
HAZARDS | Inhalation or contact with material may irritate or burn skin and eyes. Fire may produce irritating, corrosive and/or toxic gases. Vapors | | | | | | NATURAL GAS | | Gas | Lighter than air and will generally
rise and dissipate. May gather in a
confined space and travel to a source
of ignition. | | | | HEALTH
HAZARDS | explosive m
asphyxiatio | nixtures with air. Va
n without warning | sparks or flames and will form
apors may cause dizziness or
a and may be toxic if inhaled at high
gas or liquefied gas may cause burns, | | | evere injury and/or frostbite #### SYSTEM MAP Pipeline safety and emergency response information *Instructions on back #### WHAT'S INSIDE What Pipelines Transport And Their Hazards Emergency Response Plans How To Recognize A Pipeline Leak National Emergency Number Association #### Pipelines are near you You have been identified as an agency who may be called on to respond to an incident involving the pipelines in your area. These pipelines, operated by the companies whose **fact sheets** accompany this booklet, are part of the network of over 2.6 million miles of gathering, transmission, and distribution pipelines in the United States, transporting two-thirds of the energy we use each year. Pipeline Right-of-Way #### What pipelines transport and what the potential hazards are Many pipelines transport petroleum products and natural gas. Some pipelines transport other hazardous products such as chemicals, highly volatile liquids, anhydrous ammonia, or carbon dioxide. Exposure to these products can be harmful if inhaled, can cause eye and skin irritation, and/or difficulty in breathing. Fortunately, pipeline accidents are extremely rare, but they can occur. Natural gas and petroleum products are flammable, potentially hazardous, and explosive under certain conditions. Pipeline companies undertake many prevention and safety measures to ensure the integrity of their pipeline systems. You can obtain more specific information regarding pipelines and the products they carry by contacting the pipeline company directly. #### How you can help keep pipelines safe While accidents pertaining to pipeline facilities are rare, awareness of the location of the pipeline, the potential hazards, and what to do if a leak occurs can help minimize the number of accidents. A leading cause of pipeline incidents is third-party excavation damage. Pipeline companies are responsible for the safety and security of their respective pipelines. To help maintain the integrity of pipelines and their right-of-way, it is essential that pipeline and facility neighbors protect against unauthorized excavations or other destructive activities. You can help by: - Being aware of any unusual or suspicious activities or unauthorized excavations taking place within or near the pipeline right-of-way or pipeline facility. - o Develop contacts and relationships with pipeline company representatives, i.e. participate in mock drill exercises with your local pipeline company. - o Share intelligence regarding targeting of national infrastructure, and specific threats or actual attacks against pipeline companies. - o Assist with security steps for pipeline facilities during heightened national threat levels, i.e., increased surveillance near facilities. - Monitor criminal activity at the local level that could impact pipeline companies, and anti-government/pipeline groups and other groups seeking to disrupt pipeline company activities. - Keeping the enclosed fact sheets for future reference. - Attending an emergency response training program in your area. - Familiarizing yourself and your agency with the Pipelines and Informed Planning Alliance (PIPA) best practices regarding land use planning near transmission pipelines. - Completing and returning the enclosed postage-paid survey. - Report to the pipeline company localized flooding, ice dams, debris dams, and extensive bank erosion that may affect the integrity of pipeline crossings. TriView[™] Marker, Dome Marker, Flat Marker, Round Marker, Aerial Marker, Casing Vent Markers. # How to recognize the location of a pipeline Pipeline markers are important for the safety of the general public and provide emergency responders with critical information. Markers are located in the pipeline right-of-way and indicate the approximate location, but not the depth, of a buried pipeline. Although not present in certain areas, these can be found at road crossings, fence lines, and street intersections. The markers display the product transported in the pipeline, the name of the pipeline operator, and a telephone number where the operator can be reached in the event of an emergency. #### How to recognize a pipeline leak #### Sight Natural gas and Highly Volatile Liquids (HVL) are colorless and nearly invisible to the eye. Small leaks can be identified by looking for dying or discolored vegetation in a naturally green area. Hazardous liquids produce a strong sheen or film standing on a body of water. An HVL leak may be identified by a fog-like vapor cloud in areas of high humidity. Natural gas is colorless, but blowing dirt around a pipeline area may be observed, or vapor and "ground frosting" may be visible at high pressures, regardless of temperature. Other ways to recognize a leak may include: water bubbling up or standing in an unusual area, a mist or vapor cloud, a powerful fire or explosion with dense smoke plumes, or an area of petroleum-stained ground. #### Sound The volume of a pipeline leak can range from a quiet hissing to a loud roar, depending on the size and nature of the leak. #### Smell An unusual smell, petroleum or gaseous odor will sometimes accompany pipeline leaks. Natural gas and HVLs are colorless, tasteless and odorless unless odorants, such as Mercaptan, are added. Most HVLs contain a slight hydro-carbon or pungent odor. Most are nontoxic; however, products such as ammonia are considered a toxic chemical and can burn the senses when it seeks out moisture (eyes, nose or lungs). If inhaled, HVLs may cause dizziness or asphyxiation without warning. Vapor Cloud Sheen on
Water Dead Vegetation **Bubbling Water** # 911 dispatch; National Emergency Number Association (NENA) Pipeline emergency operations standard/model recommendation* Dispatch personnel play a critical role in effective response to pipeline incidents. A dispatcher's actions can save lives, direct the appropriate emergency responders to the scene, as well as help protect our environment and our nations' infrastructure. The National Emergency Number Association (NENA) recommends a focus regarding three critical areas: - · Awareness of pipelines affecting 911 service area, - Pipeline leak recognition and initial response actions, and, - Additional notifications to pipeline operators. #### Goals for initial intake: - Obtain and verify incident location, callback and contact information. - Maintain control of the call. - · Communicate the ability to HELP the caller. - Methodically and strategically obtain information through systematic inquiry to be captured in the agency's intake format. - Recognize the potential urgency of situations involving the release of dangerous gases or liquids related to pipelines or similar events of this nature and immediately begin the proper notifications consistent with agency policy. - Perform all information entries and disseminations, both Initial and updated. #### First response call intake checklist: - · Determine location. - Determine exactly what has happened. - Determine if immediate danger exists. - · Initiate public response resources. - Contact the pipeline company as soon as practical. #### Additional notifications: - Valve closure - o Should be performed only by pipeline company personnel. - o Many pipeline companies also have the ability to perform these actions remotely. - If pipeline emergency contact information is unknown - o Call 811 to obtain operator emergency information. - o Ask emergency responders to look for pipeline markers in the area. - o Local gas companies are often times aware of other operators in their service area and may have contact information for these companies. #### Emergency response plans for gas and hazardous liquid pipeline companies Federal regulations for both gas and hazardous liquid pipelines require companies to have written procedures for responding to emergencies involving their pipeline facilities. Because pipelines are often located in public space, the regulations further require that companies include procedures for planning with emergency and other public officials to ensure a coordinated response. Please contact your local pipeline companies for information regarding their company-specific emergency response plan. ^{*} NENA 56-007, September 28, 2010. #### What the pipeline company does if a leak occurs To prepare for the event of a leak, pipeline companies regularly communicate, plan, and train with local emergency personnel such as fire and police departments. Upon the notification of an incident or leak, either by the pipeline company's internal control center or by phone, the pipeline company will immediately dispatch trained personnel to assist public safety officials in their response to the emergency. While emphasizing public safety and environmental protection, pipeline companies will also take steps to minimize the amount of product that leaks out and to isolate the pipeline. #### The pipeline company's control center may: - Stop or reduce the flow of product. - Dispatch pipeline emergency response personnel and equipment to the emergency site. - Inform you of any special precautionary recommendations. - Act as a liaison between emergency response agencies and pipeline company personnel. - Help bring the emergency to conclusion as quickly and safely as possible. #### Maintaining safety and integrity of pipelines Pipeline companies invest significant time and capital maintaining the quality and integrity of their pipeline systems. Most active pipelines are monitored 24 hours a day via manned control centers. Pipeline companies also utilize aerial surveillance and/or on-ground observers to identify potential dangers. Control center personnel continually monitor the pipeline system and assess changes in pressure and flow. They notify field personnel if there is a possibility of a leak. Automatic shut-off valves are sometimes utilized to isolate a leak. Gas transmission and hazardous liquid pipeline companies have developed supplemental hazard and assessment programs known as Integrity Management Programs (IMPs). IMPs have been implemented for areas designated as "high consequence areas" (HCAs) in accordance with federal regulations. Specific information about companies' programs may be found on their company web sites or by contacting them directly. Underground Pipeline US DOT #### National Pipeline Mapping System (NPMS) The National Pipeline Mapping System (NPMS) is a geographic information system created by the U.S. Department of Transportation (DOT), Pipeline and Hazardous Materials Safety Administration (PHMSA), Office of Pipeline Safety (OPS) in cooperation with other federal and state governmental agencies and the pipeline industry to provide information about companies and their pipelines. The NPMS web site is searchable by ZIP Code or by county and state, and can display a printable county map. Within the NPMS, PHMSA has developed the Pipeline Integrity Management Mapping Application (PIMMA) for use by pipeline companies and federal, state, and local government officials only. The application contains sensitive pipeline infrastructure information that can be viewed via internet browsers. Access to PIMMA is limited to federal, state, and local government officials, as well as pipeline companies. PIMMA access cannot be given to any person who is not a direct employee of a government agency. For a list of companies with pipelines in your area and their contact information, or to apply for PIMMA access, go to npms.phmsa.dot.gov. Companies that operate production facilities, gas/liquid gathering piping, and distribution piping are not represented by NPMS nor are they required to be. #### High consequence area identification* Pipeline safety regulations use the concept of "High Consequence Areas" (HCAs), to identify specific locales and areas where a release could have the most significant adverse consequences. Once identified, operators are required to devote additional focus, efforts, and analysis in HCAs to ensure the integrity of pipelines. Releases from pipelines can adversely affect human health and safety, cause environmental degradation, and damage personal or commercial property. Consequences of inadvertent releases from pipelines can vary greatly, depending on where the release occurs, and the commodity involved in the release. #### What criteria define HCAs for pipelines? Because potential consequences of natural gas and hazardous liquid pipeline releases differ, criteria for HCAs also differ. HCAs for natural gas transmission pipelines focus solely on populated areas. (Environmental and ecological consequences are usually minimal for releases involving natural gas.) Identification of HCAs for hazardous liquid pipelines focuses on populated areas, drinking water sources, and unusually sensitive ecological resources. #### HCAs for hazardous liquid pipelines: - Populated areas include both high population areas (called "urbanized areas" by the U.S. Census Bureau) and other populated areas (areas referred to by the Census Bureau as a "designated place"). - Drinking water sources include those supplied by surface water or wells and where a secondary source of water supply is not available. The land area in which spilled hazardous liquid could affect the water supply is also treated as an HCA. - Unusually sensitive ecological areas include locations where critically imperiled species can be found, areas where multiple examples of federally listed threatened and endangered species are found, and areas where migratory water birds concentrate. #### HCAs for natural gas transmission pipelines: An equation has been developed based on research and experience that estimates the distance from a potential explosion at which death, injury or significant property damage could occur. This distance is known as the "potential impact radius" (or PIR), and is used to depict potential impact circles. Operators must calculate the potential impact radius for all points along their pipelines and evaluate corresponding impact circles to identify what population is contained within each circle. Potential impact circles that contain 20 or more structures intended for human occupancy; buildings housing populations of limited mobility; buildings that would be hard to evacuate. (Examples are nursing homes, schools); or buildings and outside areas occupied by more than 20 persons on a specified minimum number of days each year, are defined as HCA's. High Consequence Area (PHMSA Fact Sheet: High Consequence Area (HCA)) ^{*} https://primis.phmsa.dot.gov/comm/FactSheets/FSHCA.htm #### Identified sites* Owners and companies of gas transmission pipelines are regulated by the US Department of Transportation (DOT). According to integrity management regulations, gas pipeline companies are required to accept the assistance of local public safety officials in identifying certain types of sites or facilities adjacent to the pipeline which meets the following criteria: - (a) A small, well-defined outside area that is occupied by twenty or more persons on at least 50 days in any twelve-month period (the days need not be consecutive). Examples of such an area are playgrounds, parks, swimming pools, sports fields, and campgrounds. - (b) A building that is occupied by 20 or more persons on at least 5 days a week for 10 weeks in any 12 month period (the days and weeks need not be consecutive). Examples included in the definition are: religious facilities, office buildings, community centers, general stores, 4-H facilities,
and roller rinks. - (c) A facility that is occupied by persons who are confined, are of impaired mobility, or would be difficult to evacuate. Examples of such a facility are hospitals, schools, elder care, assisted living/nursing facilities, prisons and child daycares. If you know of sites within your jurisdiction that fit any of the above requirements, please go to <u>isr.pipelineportal.com</u> to provide this valuable information to pipeline companies. #### Capabilities It is important for pipeline companies to understand what resources and capabilities emergency response agencies have in the event of a pipeline emergency. By providing your capabilities, pipeline companies can better plan and respond in the event of an emergency. Any information you provide will only be used for pipeline companies' communication and planning information. It is not sold, nor is it used for marketing purposes. Please go to survey.pdigm.com/capabilities/pls/eo and tell us what your capabilities are. #### Training Pipeline companies regularly host local emergency responder and local public official liaison events. A list of events can be found at <u>pipelinesafetyinfo.com/state_sites</u>. However, if you are not able to attend an event, additional resources and training are available online at <u>pipelinesafetyinfo.com/tc</u>. This can also serve as a resource for all personnel within your department. Once you complete the registration, you will be distributed an email with a username and password. #### Course Offerings Pipeline Emergencies: Introduction Pipeline Emergencies: Intermediate Training Center Portal Pipeline Emergencies: Comprehensive ^{* 49} CFR §192.903. #### **Download** the Pipeline Awareness Viewer™ (PAV) app for important emergency response information. Use PAV to: Apply for PIMMA access Visit the API training center website Register for a pipeline safety meeting near you Download the NENA call intake checklist Download the PHMSA Emergency Response Guidebook View a video about the pipeline industry Take online survey #### How to use PAV: - Launch the app. - Point your device at the brochure cover and tap the screen to scan.* - Tap the buttons to view important videos or to visit websites about pipeline safety. *For best results, enable Wi-Fi on your device before using PAV. Windows Phone® and BlackBerry® devices are not supported at this time. # PIPELINE EMERGENCY RESPONSE GUIDELINES # PIPELINE EMERGENCY RESPONSE GUIDELINES #### Pipeline Association for Public Awareness The Pipeline Association for Public Awareness (Association) is a nonprofit corporation created to enhance public safety. If you would like more information about the Association or pipeline safety and emergency preparedness education, please contact 16361 Table Mountain Parkway, Golden, CO 80403, or visit the Association's web site at www.pipelineawareness.org. Information contained in the Pipeline Emergency Response Guidelines is intended for the exclusive use of the Pipeline Association for Public Awareness' member companies and target audiences, which include the affected public, emergency responders, public officials, and excavators. Please contact the Association to request permission to reproduce any of the material contained in the Pipeline Emergency Response Guidelines. Extra copies of this booklet are available to emergency response agencies free of charge. Just send an email to info@pipelineawareness.org with your street address and quantity needed (quantities may be limited). You may also use the online order form. Click on the "Request Additional Materials" link located at the bottom of the Association's home page. This printed publication provides interactive content using LAYAR App. Download the free application from https://www.layar.com/mobile-download/ and follow the instructions below. Discover interactive content ## Table of Contents | INTRODUCTION | 3 | |---|----| | PIPELINE BASICS | 4 | | Pipelines in Your Community | | | Pipeline Right-of-Way | | | Pipeline Marker Signs | 5 | | Pipeline Control Center | 6 | | Pipeline Maps | 7 | | PRODUCTS AND FACILITIES | 8 | | Natural Gas | 8 | | Petroleum Gas | 11 | | Petroleum Liquids | 12 | | Anhydrous Ammonia, Carbon Dioxide | 15 | | Ethanol, Hydrogen Gas | 16 | | Sour Crude Oil, Sour Gas | 17 | | EMERGENCY PREPAREDNESS | | | INCIDENT RESPONSE STEPS | | | Step 1. Assess the Situation | 19 | | Step 2. Respond to Protect People, Property and the Environment | 22 | | Step 3. Call for Assistance of Trained Personnel | 27 | | Step 4. Work Together with the Pipeline Operator | 28 | | DAMAGE PREVENTION—A SHARED RESPONSIBILITY | 30 | | APPENDIX - A Leak, Hazard, and Incident Response Information | 31 | | APPENDIX - B General Products Characteristics | 32 | | APPENDIX - C Recommended Minimum Evacuation Distances for Natural Gas | | | Pipeline Leaks and Ruptures | 33 | | APPENDIX - D Natural Gas Escaping Inside a Building | 34 | | ADDITIONAL RESOURCES | 37 | | EMERGENCY RESPONSE CAPABILITIES | 39 | #### Introduction port energy products, including: natural gas, crude oil, liquid petroleum products, and chemical products unless you know of another purpose or this has relevance. Pipelines are primarily underground, which keeps them away from public contact and accidental damage. Pipelines can move large volumes of product at a significantly lower operating cost when compared to other modes of transportation. Despite safety and efficiency statistics, unless you say how/why increases present a potential population growth near pipelines present the potential for a pipeline incident. To meet the pipeline industry's goal of reliable incident-free operation, pipeline operators invest substantial human and financial resources to protect the people, property and environments near pipelines. Damage prevention measures include routine inspection and maintenance, corrosion protection, continuous monitoring and control technologies, public awareness programs, integrity management and emergency response plans. While pipelines are generally the safest method of transporting hazardous chemicals, In the unlikely event of an incident near or involving a pipeline, it is critical you know how to respond and are prepared to work together with the pipeline operator's representatives. This guide contains a set of general interoperable emergency response procedures and is intended to provide fire fighters, law enforcement officers, emergency medical technicians and all other emergency responders who may be the first to arrive at the scene with the basic information they need to safely handle a pipeline incident. It should not be considered a substitute for emergency response training, knowledge or sound judgment. This guide contains information that will help you make decisions about how to best protect your emergency response team and the surrounding public during a pipeline incident. Please review and become familiar with the emergency response guidelines before you are called to respond to a pipeline incident. #### PIPELINE BASICS Before we discuss how to respond to a pipeline incident, let's quickly review the basics about pipelines: - What are pipelines and what purpose do they serve? - Where are pipelines located? - How will you identify a pipeline right-of-way and use pipeline markers? - How does the operator monitor pipeline performance and ensure reliability? #### Pipelines in Your Community People across the nation expect to have the energy they need to drive their cars, heat their homes and cook dinner, never really considering how they get the petroleum, natural gas, and other chemical products necessary to power their daily activities. The pipeline industry has installed more than 2.1 million miles of pipeline to transport a variety of gases and liquids from gathering points to storage areas, and from refineries and processing plants to customers' homes and places of business. The U.S. Department of Transportation (DOT) defines a pipeline system as all parts of a pipeline facility through which a hazardous liquid or gas moves in transportation, including piping, valves, and other appurtenances connected to the pipeline, pumping units, fabricated assemblies associated with pumping units, metering and delivery stations, and breakout tanks. To ensure these pipeline systems remain safe, a body of local, state and federal laws, regulations and standards govern pipeline design, construction, operation, and public awareness and damage prevention programs. Specifically, pipeline operators use a series of gathering, transmission and distribution pipelines to transport more than 43 different gas and liquid products. - Gathering pipelines transport crude oil and natural gas from the well-heads and production facility to processing facilities where the oil, gas and water are separated and processed. - Transmission pipelines move refined liquid products, crude oil, and natural gas from refineries to marketing and distribution terminals typically using larger diameter, high-pressure lines. - Distribution systems for liquid and gas products vary. Liquid products are stored and transported by tanker trucks to their final destination, while gases, such as natural gas, butane, propane, ethane, etc., are transported from a storage location directly to residential and industrial customers through low-pressure distribution pipelines. #### Pipeline Right-of-Way Although typically buried underground, pipelines may also be found above-ground in extremely cold and harsh environments, and at pump and compressor stations, some valve stations and terminals. Whether aboveground or belowground, pipelines are constructed along a clear corridor of land called the right-of-way (ROW). The ROW may contain one or more pipelines, may vary in width, and will cross through public and private property. The ROW should be free of permanent structures and trees and be identified
with a marker sign. #### Pipeline Marker Signs Aboveground signs and markers identify the approximate location of underground pipelines. Markers are required to be present wherever a pipeline crosses under roads, railroads or waterways. They may also be found at other intervals and locations along the pipeline right-of-way, such as near buildings and pipeline facilities. Markers do NOT tell you the exact location, depth or direction of the pipeline; the pipeline may curve or angle around natural and manmade features. If there are multiple pipelines in the ROW, a marker sign should be posted for each pipeline. Pipeline markers may look different, but every sign tells you the same information: - Pipeline product - Pipeline operator - 24-hour emergency phone number If you are responding to a 9-1-1 call about a strange odor or leak in the area, approach the scene with caution, look for clues that a pipeline is involved, and find a marker sign identifying the pipeline product, operator and phone number to call to report the incident and obtain additional information. #### **Pipeline Control Center** When you call the 24-hour emergency phone number on a marker sign, you will speak with someone at the pipeline operator's control center. The control center is the heart of pipeline operations. Information about the pipeline's operating equipment and parameters is constantly communicated to the control center where personnel use computers to monitor pipeline pressure, temperature, flow, alarms, and other conditions in the pipeline. While pipeline operators work hard to achieve reliable incident-free operation, accidents do occur. In the event of an emergency, the control center may be able to immediately shutdown the pipeline and begin to isolate the source of the leak. The pipeline operator's control center may also have the capability to remotely open and close valves and transfer products both to and from the main pipeline at marketing and distribution facilities. As an emergency responder, you can help control the incident by being prepared to communicate as much information as possible to the pipeline operator about the current incident situation. #### **Pipeline Maps** #### National Pipeline Mapping System (NPMS) Maps of transmission pipelines and contact information for pipeline operators in your area can be found in the National Pipeline Mapping System (NPMS) at: www.npms.phmsa.dot.gov. The directory can be searched by zip code or state and county. More detailed pipeline maps are also available to Emergency Responders who have obtained a logon ID and password through the Pipeline Integrity Management Mapping Application (PIMMA) access link. #### Identified Site Emergency Planning Application (ISEPA) This is a new mapping application developed by this Association for disseminating detailed pipeline information and collecting information about populated areas near pipelines (identified sites). It is intended to be a resource for agencies involved in emergency planning. It contains the following information: - Product transported in the pipeline - Pipeline size in inches (if provided by the member company) - · Recommended initial evacuation distance - Pipeline company emergency phone number - Company name, non-emergency contact, phone, and email address - Link to document containing additional company information (if available) The mapping application can be accessed at http://isepa.pipelineawareness.org If you are visiting the site for the first time, you must request access. Please click on "Request Login Credentials" and submit your information. Users are cautioned that the application DOES NOT INCLUDE ALL PIPELINES. If you zoom in and don't see any pipelines in your area, just navigate to Utah – Salt Lake County to see a good example of what the application is intended to provide. We welcome your comments. #### PRODUCTS AND FACILITIES #### Natural Gas (DOT ERG 115) Natural gas is the predominant product found in gas distribution pipelines, and with few exceptions, is transported via pipelines in its gaseous form. Like crude oil, it is a naturally occurring resource formed millions of years ago as a result of heat and pressure acting on decayed organic material. It is extracted from wells and transported through gathering pipelines to processing facilities. From these facilities it is transported through transmission pipelines to distribution centers (or distribution pipeline systems). The main ingredient in natural gas is methane (94%). Natural gas is odorless, colorless, tasteless and nontoxic in its natural state. When transported via transmission pipelines, natural gas typically does not have odorant added. An odorant is added when it is delivered to a distribution system. At ambient temperatures it remains a lighter than air gas; however, it can be compressed (CNG) under high pressure to make it convenient for use in other applications or liquefied (LNG) under extremely cold temperatures (-260° F) to facilitate transportation. #### Indications of a Leak - An odor like rotten eggs or a burnt match (odorized natural gas only) - · A loud roaring sound like a jet engine - A hissing or whistling noise - Fire coming out of or on top of the ground - Dirt blowing from a hole in the ground - An area of frozen ground in the summer - · An unusual area of melted snow in the winter - An area of dead vegetation - Bubbling in pools of water #### Hazards of a Release - Highly flammable and easily ignited by heat or sparks - Will displace oxygen and can cause asphyxiation - Fire may produce irritating and/or toxic gases - Vapors may form an explosive mixture with air - Vapors may cause dizziness or asphyxiation without warning - Is lighter than air and can migrate into enclosed spaces Natural gas pipeline system from production to end user. (Source: U.S. DOT PHMSA) Gas transmission compressor station. ### **Natural Gas Facilities** Natural gas wellhead. Natural gas processing facility. Natural gas compressor station. City gate meter station. Customer meter. #### Petroleum Gas (DOT ERG 115) Petroleum gas is a mixture of gaseous hydrocarbons, primarily propane, butane, or ethane, which are easily liquefied under pressure and commonly used for residential and commercial heating, auto-propane, or other industrial applications. Propane and butane are often stored and transported under pressure as liquid (LPG) in portable containers for use as fuel for heating and cooking applications. LPG is usually transported through hazardous liquid transmission pipelines; however, vaporized propane and butane pipelines may also be found in small distribution systems. LPG is a tasteless, colorless and odorless gas and when transported via transmission pipelines typically will not have odorant added. An odorant is added when LPG is offloaded to a distribution system or transport tanks to permit detection of vapor leakage. #### Indications of a Leak - · A white vapor cloud that may look like smoke - · A hissing or whistling noise - · An odor like petroleum liquids or gasoline - · Fire coming out of or on top of the ground - Dirt blowing from a hole in the ground - A sheen on the surface of water - An area of frozen ground in the summer - An unusual area of melted snow in the winter - An area of dead vegetation - Bubbling in pools of water #### Hazards of a Release - · Highly flammable and easily ignited by heat or sparks - Will displace oxygen and can cause asphyxiation - Vapors are heavier than air and will collect in low areas - Contact with skin may cause burns, injury, or frostbite - Fire may produce irritating and/or toxic gases - Vapors may form an explosive mixture with air #### Petroleum Liquids (DOT ERG 128) Petroleum liquids is a broad term covering many products, including: crude oil, gasoline, diesel fuel, aviation gasoline, jet fuel, fuel oil, kerosene, natural gas liquids, naphtha, xylene and other refined products. Crude oil is unrefined petroleum that is extracted from beneath the earth's surface through wells. As it comes from the well, crude oil contains a mixture of oil, gas, water and other impurities, such as metallic compounds and sulfur. Refinement of crude oil produces petroleum products that we use every day, such as motor oils and gasoline. Crude oil is normally transported from wells to refineries through gathering pipelines. Refined petroleum products are normally transported in transmission pipelines to rail or truck terminals for distribution to consumers. Odorant is not added to these products because they have a natural odor. #### Indications of a Leak - · The pooling of liquid on the ground - · An odor like petroleum liquids or gasoline - · A sheen on the surface of water - · An area of dead vegetation #### Hazards of a Release - Highly flammable and easily ignited by heat or sparks - Vapors are heavier than air and will collect in low areas - Contact with skin may cause burns, injury, or frostbite - Fire may produce irritating and/or toxic gases - Runoff may cause pollution - Vapors may form an explosive mixture with air Petroleum Refinery. American Petroleum Institute, Pipeliner Training and Assessment Program (PTAP) Liquid refined petroleum products move through a network of transmission pipelines from refineries to marketing and distribution terminals, and ultimately the consumer. # Typical Sequence of Petroleum Products Flow through a Pipeline # Petroleum Liquids Facilities Oil well. Block valve. Pumping station. Storage tanks, Truck loading facility. Rail loading facility. #### Anhydrous Ammonia (DOT ERG 125) Anhydrous ammonia is the liquefied form of pure ammonia gas. It is a colorless gas or liquid with an extremely pungent odor. It is normally transported through transmission pipelines located in the Midwest and is used primarily as an agricultural fertilizer or industrial refrigerant. #### Indications of a Leak - A white vapor cloud that may look like smoke - A hissing or whistling noise - · Dirt
blowing from a hole in the ground - · An irritating and pungent odor #### Hazards of a Release - Will displace oxygen and can cause asphyxiation - · Vapors are heavier than air and will collect in low areas - · Contact with skin may cause burns, injury, or frostbite - Toxic and may be fatal if inhaled or absorbed through skin - · Vapors are extremely irritating and corrosive - Fire may produce irritating and/or toxic gases - · Runoff may cause pollution #### Carbon Dioxide (DOT ERG 120) Carbon dioxide is a heavy gas that is normally transported in transmission pipelines as a compressed fluid. It is a naturally occurring colorless, odorless and tasteless gas used in the petroleum industry. Under normal conditions carbon dioxide is stable, inert and nontoxic. #### Indications of a Leak - A hissing or whistling noise - · Dirt blowing from a hole in the ground - An area of frozen ground in the summer - · An unusual area of melted snow in the winter - Bubbling in pools of water #### Hazards of a Release - Will displace oxygen and can cause asphyxiation - Vapors are heavier than air and will collect in low areas - Contact with skin may cause burns, injury, or frostbite - Vapors may cause dizziness or asphyxiation without warning #### Ethanol (DOT ERG 127) Ethanol, also called ethyl alcohol, is a colorless liquid that is widely used as an additive to automotive gasoline. It may be transported in buried transmission pipelines. #### Indications of a Leak - · The pooling of liquid on the ground - An odor like petroleum liquids or gasoline - · An area of dead vegetation #### Hazards of a Release - · Highly flammable and easily ignited by heat or sparks - · Vapors are heavier than air and will collect in low areas - · Contact with skin may cause burns, injury, or frostbite - Fire may produce irritating and/or toxic gases - · Runoff may cause pollution - · Vapors may form an explosive mixture with air #### Hydrogen Gas (DOT ERG 115) Hydrogen gas is commonly produced from the steam reforming of natural gas. It is frequently used near its production site, with the two main uses being petrochemical processing and ammonia production. It is a flammable gas that is colorless, odorless and lighter than air. It is nontoxic, but can act as a simple asphyxiant in confined spaces. Hydrogen is normally transported between industrial facilities as a gas. #### Indications of a Leak - · A hissing or whistling noise - An unusual area of melted snow in the winter - · An area of dead vegetation - Bubbling in pools of water #### Hazards of a Release - Highly flammable and easily ignited by heat or sparks - Will displace oxygen and can cause asphyxiation - Fire may produce irritating and/or toxic gases - Vapors may form an explosive mixture with air - Vapors may cause dizziness or asphyxiation without warning - Is lighter than air and can migrate into enclosed spaces #### Sour Crude Oil (DOT ERG 131), Sour Gas (DOT ERG 117) Products containing little or no sulfur are often referred to as "sweet", whereas, products containing high concentrations of sulfur and hydrogen sulfide (H₂S) are commonly referred to as "sour". Hydrogen sulfide is a colorless, flammable, corrosive and extremely toxic gas with an offensive rotten egg odor. It is created naturally by the bacterial breakdown of sulfur-containing organic materials. Industrial activities that can produce hydrogen sulfide include petroleum/natural gas drilling and refining, wastewater treatment, coke ovens, tanneries, and paper mills. In natural gas and crude oil, it is a contaminant that must be removed before products are sent to commercial markets. Hydrogen sulfide can be dissolved in liquids and may be released by agitation, depressurization, or heating. Since hydrogen sulfide is heavier than air, it will collect in low places. Refer to Appendix A for additional leak and hazard information. Hydrogen sulfide's offensive odor is readily detectable at very low concentrations. However, smell cannot be relied upon to forewarn of dangerous concentrations because it rapidly degrades the sense of smell due to paralysis of the olfactory nerve. A longer exposure to lower concentrations has a similar desensitizing effect on the sense of smell. Exposure to relatively low levels of hydrogen sulfide can be fatal. The physical effects of various concentration levels are shown below. | ppm | Physical Effects | |-----|---| | 1 | Can be smelled (rotten egg odor) | | 10 | Obvious and unpleasant odor (Permissible 8 hour exposure level – OSHA) | | 50 | Loss of sense of smell in 15 minutes (10 minute exposure level once only if no other measurable exposure occurs – OSHA) | | 100 | Loss of smell in 3–15 minutes, stinging in eyes and throat, altered breathing (Immediately Dangerous to Life and Health – OSHA) | | 500 | Unconscious quickly, death will result if not rescued promptly | #### NOTE H_2S has a much broader LEL / UEL range than natural gas: 4% - 44%. #### **EMERGENCY PREPAREDNESS** Pipeline incidents present some of the most dangerous situations an emergency responder may encounter. Pipelines contain flammable, hazardous and even deadly petroleum gases, liquids, and other chemical products that present emergency responders with a myriad of hazards and risks that vary depending on the topography, weather, and properties of the material involved. For the majority of pipeline incidents, you will have a limited number of options to actually stop the leak. In almost all cases, the pipeline operator will be required to resolve the incident safely. Consequently, your goal is to minimize the level of risk to other responders, the community and the environment. Advance knowledge of where pipelines are located in your community, the products transported in them, and how to contact and work together with the pipeline operator in the event of an incident are key factors to an effective and safe response. Each pipeline operator maintains an emergency response plan that outlines the roles and responsibilities of company, contractor, and local response personnel. #### What you should know before an incident - The names of companies operating pipelines in your community - Emergency and non-emergency contact information for all operators - The approximate location of the pipelines - What materials or products are being transported in the pipelines - · The physical indications of an unintended release - The possible hazards associated with an unintended release - The maximum potential impact an unintended release may have - The steps that should be taken to protect the public Following standardized procedures will bring consistency to each response and will help minimize the risk of exposure to all responders. The information in this guide provides a framework to discuss safety issues as they relate to the hazards and risks presented by pipeline emergencies. After reviewing the standard pipeline incident response steps, you should discuss your agency's pipeline emergency preparedness and how you will handle an incident in your community. Pipeline operators will report hazardous leaks and other emergency conditions that may have an adverse impact on public safety or the environment to local 911 centers. #### INCIDENT RESPONSE STEPS To effectively respond to a pipeline leak, spill or fire, emergency responders need to understand the hazards and risks associated with the incident. You should seek additional information about the pipeline in question as soon as possible. Calling the 24-hour emergency phone number on a nearby pipeline marker sign, contacting the appropriate emergency response agency, and consulting the information in the DOT *Emergency Response Guidebook* may provide more detailed, situation-specific information. Pipeline operators hope you never have to respond to a pipeline incident, but if you do, **remember**: - Every incident is different—each will have special problems and concerns. - Continue to gather information and monitor the situation until the threat is removed. #### Step 1. Assess the Situation #### Approach with Caution from Upwind Location To protect yourself and other responders from any hazards associated with the incident it is critical you approach cautiously from an upwind and/or crosswind location. - Do not park over manholes or storm drains. - Do not approach the scene with vehicles or mechanized equipment until the isolation zones have been established. Vehicle engines are a potential ignition source. - Do not walk or drive into a vapor cloud or puddle of liquid. - Use appropriate air-monitoring equipment to establish the extent of vapor travel. Because any number of fire and health hazards may be involved, it is important you resist the urge to rush in until you know more about the product and hazards involved in the incident. Consider the following: - Is there a fire, spill or leak? - What are the weather conditions? - What direction is the wind blowing? - What is the terrain like? - Who and what is at risk: people, property or environment? - Is there a vapor cloud? Approaching the scene with caution is critical when responding to a pipeline incident. - What actions should be taken: evacuation or diking? - What human/equipment resources are required and readily available? - What can be done immediately? # OSEM H ORIGINAL STRANGE STATES OF THE DEPT. Securing the scene is an important part of site safety. #### Secure the Scene Without entering the immediate hazard area, you want to isolate the area and deny entry to unauthorized persons including other responders. It may be necessary to evacuate everyone in the danger area to a safe location upwind of the incident area. #### **Employ NIMS and the Incident Command System** Developed by the Department of Homeland Security, the National Incident Management System (NIMS) integrates effective practices in emergency
preparedness and response into a comprehensive national framework for incident management. The NIMS enables responders at all jurisdictional levels and across all disciplines to work together effectively and efficiently. Because pipeline incidents require coordination of information and resources among all responders, the Incident Command System (ICS) is one of the most important 'best practices' in the NIMS. The ICS provides common terminology, organizational structure and duties, and operational procedures among operator personnel and various federal, state and local regulatory and response agencies that may be involved in response operations. Incident Commander. Identify an Incident Commander. The Incident Commander is the person responsible for the management of on-scene emergency response operations. In cooperation with the pipeline operator's point of contact, the Incident Commander determines when it is safe for the response teams to enter the area and access the pipeline. The Incident Commander must be trained to perform these responsibilities and not be automatically authorized by virtue of his/her normal position within the organization. Establish a command post, lines of communication and a staging area for additional responding equipment and personnel. The Incident Command System consists of the Incident Commander, the Command Staff, and the general staff consisting of the Operations, Planning, Logistics and Finance/Administration Sections. Information and resource coordination between response agencies is vital to effectively manage a pipeline incident. If other units are on-scene, ensure operations are coordinated and unified command is established. A product's physical and chemical properties determine how the product will behave and how it can harm. Emergency responders need to analyze the problem and assess potential outcomes based on the hazardous materials involved. Understanding the hazards will enable you to understand what risk you will be taking and help you select the best course of action with the least risk. - Locate a pipeline marker sign to identify the pipeline product, operator and 24-hour emergency phone number. - Call the emergency phone number to report the incident to the pipeline operator's control center. Control center personnel may provide additional information about the pipeline product and its hazards. - Use the DOT Emergency Response Guidebook to identify potential hazards, establish initial isolation distances, and determine response tactics. Additional information is contained in Appendix A, B and C. - Use air-monitoring equipment appropriate to the materials in the pipeline. Do NOT assume gases or vapors are harmless because of a lack of smell or quick desensitization to the strong odors of materials such as hydrogen sulfide or anhydrous ammonia. - Use the highest level of precaution and protection until you know the area is safe of flammable, toxic, and mechanized and electrical hazards. Use caution as you may encounter: - Flammable atmospheres - Hydrogen sulfide (H₂S) in crude oil/natural gas pipelines - Anhydrous ammonia pipelines - Oxygen deficient/enriched atmospheres **NOTE**If natural gas is escaping inside a building, refer to Appendix D for additional precautions. # Step 2. Respond to Protect People, Property and the Environment Protective actions are those steps taken to preserve the health and safety of emergency responders and the public during a pipeline incident. While the pipeline operator concentrates on the pipeline, responders should concentrate on isolating and removing ignition sources and moving the public out of harms way. Several response procedures can and should be pursued simultaneously. You will also need to continually reassess and modify your response accordingly. #### Establish Isolation Zones and Set Up Barricades Isolation zones and barricades prevent unauthorized people and unprotected emergency responders from entering the hazard area and becoming injured. The size of the containment area will be dictated by the location and size of the release. You also want to consider atmospheric conditions, as isolation distances change from daytime to nighttime due to different mixing and dispersion conditions in the air. Remember, gas odor or the lack of gas odor is not a sufficient measurement to establish safe isolation zones. - Based on the type of incident, use any or all of the following to calculate and establish isolation zones: - O DOT Emergency Response Guidebook - Information from the pipeline operator's representative - Heat intensity levels - o Measurements from air-monitoring equipment - Use visible landmarks, barricade tape and traffic cones to identify hot/warm/cold zones. - Define entry and exit routes. Plan an escape route in case conditions deteriorate. - Be certain to allow enough room to move and remove your own equipment. The more time, distance and shielding between you and the material the lower the risk. #### Rescue and Evacuate People Any efforts made to rescue persons and protect property or the environment must be weighed against the possibility that you could become part of the problem. - Do not walk or drive into a vapor cloud or puddle of liquid. - Evacuate or shelter-in-place as necessary, providing instruction and frequent updates to the public while evacuated or sheltered-in-place. - Administer first aid and medical treatment, as needed. - Enter the area only when wearing appropriate protective gear, such as Structural Fire Fighters' Protective Clothing (SFPC) (helmet, coat, pants, boots, gloves and hood) and a Positive Pressure Self-Contained The DOT Emergency Response Guidebook (ERG) is a good source of information on hazardous materials. Breathing Apparatus (SCBA). Because no single protective clothing material will protect you from all dangerous pipeline materials, always use the highest level of caution. #### **Eliminate Ignition Sources** Ignition sources include electrical motors, firearms, vehicles, telephones, emergency radios, cigarettes, construction equipment, static electricity, open flames or sparks. - Eliminate ignition sources, if possible without additional exposure or great risk. - Park all emergency vehicles at a safe distance beyond the isolation zone (upwind). - Do NOT light a match, start an engine, use a telephone or radio, switch lights on or off, or use anything that may create a spark. #### Control Fires, Vapor and Leaks Because there are many variables to consider, the decision to use water on fires or spills involving water-reactive materials should be based on information from an authoritative source, such as the pipeline operator, who can be contacted by calling the 24-hour emergency phone number listed on a nearby pipeline marker sign. WARNING Some products, such as anhydrous ammonia, can react violently or even explosively with water. Water getting inside a ruptured or leaking container may cause an explosion or the product's reaction with water may be more toxic, corrosive, or otherwise more undesirable than the product of a fire without water applied. Consequently, it is best to leave a fire or leak alone except to prevent its spreading. #### Fire Control Extinguishing a primary fire can result in explosive re-ignition. Unless it is necessary to save human life, flammable gas fires should NOT be extinguished on flammable gas pipelines unless the fuel source has been isolated and the pipeline operator advises you to take this action! If the fuel source is not shut off and the fire is extinguished, leaking gas can migrate away from the pipeline and find an ignition source. - Let the primary fire burn. Eliminate potential ignition sources. - Cool surrounding structures, equipment and vessels. Because water is an inefficient and even dangerous way to fight fuel fires, use a fog pattern, NOT a straight stream of water. Please note some products are not compatible with water; refer to the DOT Emergency Response Guidebook. - Do not inhale fumes, smoke or vapors. - Once the primary fire is out, beware of hot spot re-ignition. - Do not operate pipeline equipment. It is important to wear proper protection and use appropriate chemical agents and equipment when containing the vapor release until the pipeline operator arrives on scene. #### Vapor Control Limiting the amount of vapor released from a pool of flammable or corrosive liquids requires the use of proper protective clothing, specialized equipment, appropriate chemical agents, and skilled personnel. For these reasons, it is best to contain the hazards and wait for the pipeline operator's representative to handle the pipeline and its product. - Do not inhale fumes, smoke or vapors. - Eliminate ignition sources! Flammable gases may escape under pressure from a pipeline, form a vapor cloud, and be ignited by an ignition source in the area. Explosions of unconfined vapor clouds can cause major structural damage and quickly escalate the emergency beyond responder capabilities. - Do not ignite a vapor cloud! Pipeline operators will perform this dangerous task. - Avoid forced ventilation of structures and excavations. Forced ventilation can actually increase the possibility of a flammable atmosphere. - Limited fog misting can be of some benefit if knocking down a vapor cloud, especially if such a cloud appears to be spreading beyond the containment site. Fog misting must be used carefully to prevent incompatible product/water mixing or the spread of product to other areas, as containment dikes may become overfilled. Product-compatible foam can be used to suppress vapors or for rescue situations, however, be extremely cautious if fuel discharge is not yet stopped. **CAUTION** Before using water spray or foam to control vapor emissions or suppress ignition, obtain technical advice based on chemical name identification. Refer to the pipeline operator and DOT *Emergency Response Guidebook*. #### Leak Control In addition to hazards such as
flammability, toxicity and oxygen deficiency, liquid pipeline leaks and ruptures can create major problems with spill confinement and containment. What seems like a minor spill may evolve into a major spill as liquid inside the pipeline continues to drain out of the line. Floating and skimmer booms. - Ask yourself where the spill will be in a few hours, how close the incident is to exposures or sensitive areas, and what can be done to confine the spill or divert it away from exposures. - Establish barriers to prevent leaks from spreading to water sources, storm drains or other sensitive areas. There are several basic containment devices that can be used to prevent the migration of petroleum products on land or on small streams. - Storm sewer or manhole dam - Small stream containment boom - Pipe skimming underflow dam - Wire fence or straw filter dam If a leak is accidentally ignited, firefighting should focus on limiting the spread of fire damage, but in NO circumstances should efforts be made to extinguish the fire until the source of supply has been cut off or controlled. - Do not walk into or touch spilled material. - Do not operate pipeline equipment. #### Step 3. Call for Assistance of Trained Personnel #### Contact Your Organization As soon as possible, contact your organization. This will set in motion a series of events ranging from dispatching additional trained personnel to the scene to activating the local emergency response plan. Ensure that other local emergency response departments have been notified. #### Call the Pipeline Operator Immediately call the 24-hour emergency phone number of the pipeline operator, which is listed on a marker sign located at a nearby road crossing, railroad or other point along the pipeline right-of-way. During the call, pipeline control center personnel will dispatch a representative to the scene. The control center will immediately act to shutdown the pipeline and isolate the emergency. The pipeline control center may also have the capability to remotely open and close manifold valves and to transfer products both to and from the main pipeline at marketing and distribution facilities. - Be prepared to provide pipeline control center personnel with the following information: - Call-back number, contact name (usually the Incident Commander) - Detailed location, including state, county, town, street or road - Type of emergency: fire, leak, vapor - When incident was reported locally - Any known injuries - Other officials on site: police, fire, medical, LEPCs, etc. - Surrounding exposures/sensitive areas - Any special conditions: nearby school, hospital, prison, railroad, etc. - Local conditions: weather, terrain #### Step 4. Work Together with the Pipeline Operator Protection of life, property and the environment is always the highest priority. Pipeline operators will work in concert with local emergency responders to eliminate possible sources of ignition for a leak or vapor cloud and to limit or contain the spill. Communication and coordination are the key elements of every response effort. #### 911 Centers and Pipeline Control Centers - Receive initial notifications and collect critical information. - Dispatch personnel and equipment to the scene. - Disseminate information to other agencies or organizations. - · Establish a point of contact for ongoing communications. #### Pipeline Operator's Representative - Serves as the primary contact for communication between the operator's team and emergency responders. They will be familiar with the Incident Command System and are normally HAZWOPER certified as well. - Establishes contact with the Incident Commander before and upon arrival to avoid accidental entry into isolation zones or ignition of the release. - Recommends actions to take especially as they relate to containment and control of the pipeline product. The pipeline operator's representative(s) is trained to know: - How to shut off the supply of gas or liquid. Only the operator's representative is trained to operate pipeline equipment. - What potential hazards may be present at the location. - What additional complications may result from response activities as they relate to the pipeline and its product. - How to fight small fires with hand held extinguishers, administer basic first aid, perform CPR, and assist with evacuations or traffic control. #### **Emergency Responders** - Maintain site control and act as Incident Commander. - Eliminate ignition sources. Provide standby fire-watch personnel. - Suppress vapor generation. - Provide standby rescue personnel to pipeline operator personnel entering the incident area to stop the release. - Help maintain containment dams and install more as needed. - Monitor the atmosphere in the repair and containment areas #### Together, Incident Commander and Pipeline Operator's Representative - Identify public health action levels regarding petroleum-related hazards during a release/discharge, as well as the protective actions to be taken for the public. - Establish unified command as soon as practicable. As the responsible party, operators will take an active role in the incident command structure. - Review whether it is safe for the operator's emergency response team and/or their equipment to enter the incident area. - Determine whether the zone of influence needs additional barricading and diking. - Coordinate public information needs for the affected area to ensure relevant information is disseminated to the public/media. - Decide when the area is safe for the affected public to re-enter. - Share any "after action" reports and cooperate on improvements to response procedures. Download the free Layar App Scan this page Discover interactive content #### DAMAGE PREVENTION—A SHARED RESPONSIBILITY #### Pipeline Integrity The pipeline industry uses a wide range of tools and technologies to maintain safe operations. They visually inspect aboveground pipes and related equipment for corrosion and damage. Operator personnel walk, drive and fly over pipeline right-of-ways inspecting them for unauthorized activities, leaks, and other conditions that might endanger the pipeline. As you already know, pipeline control center personnel continuously monitor pipeline operations and will initiate corrective actions if problems are identified. Pipeline operators also use in-line inspection tools known as "smart pigs", hydrostatic testing, electro-magnetic testing, and other techniques to identify defects which could threaten pipeline integrity. If inspection and testing identify any integrity-threatening conditions, the operator takes corrective action to maintain safe operations. ## One-Call Centers and Calling 811 Many types of emergency situations can affect buried pipelines. These include: train derailments, floods, earthquakes, forest fires, structure collapses, and other similar events where earth has been disturbed or will be moved as part of the response efforts. In these situations, pipeline companies should be notified as soon as possible so they can monitor and verify the integrity of nearby pipelines. Responders may be able to notify pipeline operators of the emergency by calling 811 and informing the One-Call Center of the situation. If the call center procedures allow these types of notifications, all operators with buried facilities in the area will be notified and will respond. Coordination with pipeline operators during these types of emergency situations will ensure the safety of the response team and also the surrounding community. ### **Damage Reporting** In our nation's time of heightened security, it is more important than ever to protect pipelines against damage or attack. Homeland security and infrastructure protection is a shared responsibility. Report any damages unusual or suspicious activities along a pipeline right-of-way to the pipeline operator. The operator will immediately investigate and repair any damage. # Appendix A # Leak, Hazard, and Emergency Response Information | | Natural Gas | Petroleum Gas | Petroleum Liquids | Anhydrous Ammonia | Carbon Dioxide | Ethanol | Hydrogen Gas | Sour Gas (H2S) | Sour Crude Oil (H2S) | Liquids & Natural Gas | |--|-------------|---------------|-------------------|-------------------|----------------|---------|--------------|----------------|----------------------|-----------------------| | INDICATIONS OF A LEAK | (4) | 741 | | _ | _ | _ | - | · · | · · | 141 | | An odor like rotten eggs or a burnt match | (1)
X | (1) | | - | | - | - | X | Х | (1) | | A loud roaring sound like a jet engine A white vapor cloud that may look like smoke | ^ | Х | | X | - | - | - | ^ | | X | | A hissing or whistling noise | × | X | - | X | X | - | X | X | - | - v | | | X | Α. | | X | X | V | X | X | V | X | | The pooling of liquid on the ground | | | X | - | - | X | ļ | | X | X | | An odor like petroleum liquids or gasoline | | X | X | - | - | X | | | X | X | | Fire coming out of or on top of the ground | X | Х | | | | | X | X | | X | | Dirt blowing from a hole in the ground | X | Х | | X | Х | | X | Х | | X | | A sheen on the surface of water | | X | X | | | | | | X | X | | An area of frozen ground in the summer | X | X | | | X | | X | X | | X | | An unusual area of melted snow in the winter | X | Х | | | X | | X | X | | X | | An area of dead vegetation | X | X | X | | | X | X | X | X | X | | Bubbling in pools of water | X | X | | | X | | X | X | | X | | An irritating and pungent odor | | | | X | | | | X | X | | | HAZARDS OF A RELEASE | | | | | | | | | | | | Highly flammable and easily ignited by heat or sparks | X | Х | X | | | X | X | X | X | X | | Will displace oxygen and can cause asphyxiation | Х | Х | | X | Х | | Х | Х | | X | | Vapors are heavier than air and will collect in low areas | | Х | X | X | X | X | | X | X | X | | Contact with skin may cause burns, injury, or frostbite | | Х | X | Х | Х |
Х | Х | Х | X | X | | Initial odor may be irritating and deaden the sense of smell | | | | | | | | Х | Х | | | Toxic and may be fatal if inhaled or absorbed through skin | | | | X | T | | | X | X | | | Vapors are extremely irritating and corrosive | | | | X | | | | Х | X | | | Fire may produce irritating and/or toxic gases | X | Х | Х | Х | | X | Х | Х | Х | X | | Runoff may cause pollution | | | X | X | | X | | | Х | X | | Vapors may form an explosive mixture with air | X | Х | X | | | X | X | Х | Х | X | | Vapors may cause dizziness or asphyxiation without warning | (1) | (1) | - | | Х | - | Х | Х | Х | (1) | | Is lighter than air and can migrate into enclosed spaces | X | | | | | 1 | Х | | | X | | EMERGENCY RESPONSE | | | | | | | | | | | | Avoid any action that may create a spark | X | Х | X | | 1 | X | Х | X | Х | X | | Do NOT start vehicles, switch lights, or hang up phones | X | X | X | - | | X | X | X | X | X | | Evacuate the area on foot in an upwind and uphill direction | X | X | X | X | X | X | X | X | X | X | | Alert others to evacuate the area and/or keep people away | X | X | X | X | X | X | X | X | X | X | | From a safe location, call 911 to report the emergency | X | X | X | X | X | X | X | X | X | X | | Call the pipeline operator and report the event | X | × | X | X | X | X | X | X | X | X | | Wait for emergency responders to arrive | X | × | X | X | X | X | X | X | X | X | | Do NOT attempt to close any pipeline valves | X | × | X | X | | | | 1000 | | | | Take shelter inside a building and close all windows | ^ | ^ | ^ | X | X | X | X | X | X | X | Note (1) these products are naturally odorless and only certain pipeline systems may be odorized. # Appendix B ### **General Product Characteristics** | Products (1) | Flash
Point
(deg. F) | Flammable
Limits
(% in air by
volume) | Auto
Ignition
(deg. F) | Vapor
Density
(air = 1) | | |--|--|--|--|---|--| | Natural Gas (2)
Methane
Ethane | -300
-306
-211 | 4.0 – 16.0
5.0 – 15.0
3.0 – 12.5 | 1000
1076
882 | 0.6
0.55
1.04 | | | Petroleum Gas (3) Propane Butane Ethane Ethylene Propylene | -170
-156
-76
-211
-76
-162 | 2.0 - 12.0
2.1 - 9.5
1.9 - 8.5
3.0 - 12.5
2.7 - 36.0
2.4 - 10.3 | 800
842
550
882
842
851 | >1
1.56
2.07
1.04
0.98
1.49 | | | Petroleum Liquids Crude Oil Gasoline Diesel Fuel Aviation Gasoline Jet Fuel Fuel Oil Kerosene Naphtha Xylene | -45 - 240
-40 - 200
-45
100 - 130
-50
100 - 140
100 - 240
100 - 162
-3
63 | 0.5 - 15.0
0.6 - 8.0
1.2 - 7.8
0.6 - 7.5
1.2 - 7.1
0.6 - 19.0
0.6 - 7.5
0.7 - 5.0
1.1 - 5.9
1.0 - 7.0 | 410
492
536
494
824
410
410
410
550
867 | >1
4.5
3.5
4.5
3.5
4.5
4.5
4.5
2.5
3.7 | | | Anhydrous Ammonia | NA | 16.0 – 25.0 | 1204 | 0.6 | | | Carbon Dioxide | NA | NA | NA | >1 | | | Ethanol | 55 | 3.3 – 19.0 | 685 | 1.6 | | | Hydrogen Gas | -423 | 4.0 – 75.0 | 932 | 0.07 | | | Hydrogen Sulfide Gas (H2S) | -115 | 4.0 – 44.0 | 500 | 1.19 | | #### Notes: - The bolded entries represent broad product categories. The corresponding information has been generalized and may vary depending on the specific product or combination of products transported. Information shown for specific products may also vary by grade or individual manufacturer. - 2. Natural gas that is stored or transported in the liquid state is commonly referred to as LNG. - 3. Petroleum gasses may be transported as a gas or a liquid. When transported as a liquid, they are commonly referred to as Liquefied Petroleum Gas (LPG), Natural Gas Liquids (NGL) or Highly Volatile Liquids (HVL). These products will be in the form a liquid when under pressure but will take the form of a gas when released to the atmosphere. - 4. This information was compiled from multiple sources: WISER, Wikipedia, and various MSDS sheets. It is intended to provide general guidance and is not inclusive of all products. Manufacturers MSDS sheets should be referred to when specific information is needed. ## Appendix C ## Recommended Minimum Evacuation Distances For Natural Gas Pipeline Leaks and Ruptures (Not applicable for Butane, Propane, or other Hazardous Liquids) #### Pipeline Size (Inches) | | 4 | 6 | 8 | 10 | 12 | 16 | 20 | 22 | 24 | 30 | 36 | 42 | |------|-----|-----|-----|------|------|------|------|------|------|------|------|------| | 100 | 91 | 137 | 182 | 228 | 274 | 365 | 456 | 502 | 547 | 684 | 821 | 958 | | 200 | 129 | 193 | 258 | 322 | 387 | 516 | 645 | 709 | 774 | 967 | 1161 | 1354 | | 300 | 158 | 237 | 316 | 395 | 474 | 632 | 790 | 869 | 948 | 1185 | 1422 | 1659 | | 400 | 182 | 274 | 365 | 456 | 547 | 730 | 912 | 1003 | 1094 | 1368 | 1642 | 1915 | | 500 | 204 | 306 | 408 | 510 | 612 | 816 | 1020 | 1122 | 1224 | 1529 | 1835 | 2141 | | 600 | 223 | 335 | 447 | 558 | 670 | 894 | 1117 | 1229 | 1340 | 1675 | 2011 | 2346 | | 700 | 241 | 362 | 483 | 603 | 724 | 965 | 1206 | 1327 | 1448 | 1810 | 2172 | 2534 | | 800 | 258 | 387 | 516 | 645 | 774 | 1032 | 1290 | 1419 | 1548 | 1935 | 2322 | 2709 | | 900 | 274 | 410 | 547 | 684 | 821 | 1094 | 1368 | 1505 | 1642 | 2052 | 2462 | 2873 | | 1000 | 288 | 433 | 577 | 721 | 865 | 1154 | 1442 | 1586 | 1730 | 2163 | 2596 | 3028 | | 1100 | 302 | 454 | 605 | 756 | 907 | 1210 | 1512 | 1664 | 1815 | 2269 | 2722 | 3176 | | 1200 | 316 | 474 | 632 | 790 | 948 | 1264 | 1580 | 1738 | 1896 | 2369 | 2843 | 3317 | | 1300 | 329 | 493 | 658 | 822 | 986 | 1315 | 1644 | 1809 | 1973 | 2466 | 2959 | 3453 | | 1400 | 341 | 512 | 682 | 853 | 1024 | 1365 | 1706 | 1877 | 2047 | 2559 | 3071 | 3583 | | 1500 | 353 | 530 | 706 | 883 | 1060 | 1413 | 1766 | 1943 | 2119 | 2649 | 3179 | 3709 | | 1600 | 365 | 547 | 730 | 912 | 1094 | 1459 | 1824 | 2006 | 2189 | 2736 | 3283 | 3830 | | 1700 | 376 | 564 | 752 | 940 | 1128 | 1504 | 1880 | 2068 | 2256 | 2820 | 3384 | 3948 | | 1800 | 387 | 580 | 774 | 967 | 1161 | 1548 | 1935 | 2128 | 2322 | 2902 | 3482 | 4063 | | 1900 | 398 | 596 | 795 | 994 | 1193 | 1590 | 1988 | 2186 | 2385 | 2981 | 3578 | 4174 | | 2000 | 408 | 612 | 816 | 1020 | 1224 | 1631 | 2039 | 2243 | 2447 | 3059 | 3671 | 4283 | | 2100 | 418 | 627 | 836 | 1045 | 1254 | 1672 | 2090 | 2299 | 2508 | 3134 | 3761 | 4388 | | 2200 | 428 | 642 | 856 | 1069 | 1283 | 1711 | 2139 | 2353 | 2567 | 3208 | 3850 | 4492 | Pressure (psig) Table 1 - Evacuation Distance in Feet The applicable leak or rupture condition is that of a sustained trench fire fueled by non-toxic natural gas escaping from two full bore pipe ends. Blast overpressure is not addressed. The distances shown in Table 1 are intended to provide protection from burn injury and correspond to a thermal heat flux exposure level of 450 Btu/hr ft2. This is the accepted limit of heat exposure for unprotected outdoor areas where people congregate; as established by the US Department of Housing & Urban Development Code 24CFR51, Subpart C, Siting of HUD Assisted Projects Near Hazardous Operations Handling Conventional Fuels or Chemicals of an Explosive or Flammable Nature. The formula used to calculate distance was taken from the Gas Research Institute Report GRI-00/0189, A Model for Sizing High Consequence Areas Associated with Natural Gas Pipelines, 2001, prepared by C-FER Technologies. The formula is: square root of pressure x nominal pipe size x 2.28. That model does not take into account wind or other factors which may greatly influence specific conditions. Users are advised that the distances shown in Table 1 are considered to be "general information" only and are not intended to replace a site specific risk analysis. The Pipeline Association for Public Awareness makes no warranty with respect to the usefulness of this information and assumes no liability for any and all damages resulting from its use. Anyone using this information does so at their own risk. ## Appendix D ## Natural Gas Escaping Inside a Building #### POTENTIAL HAZARDS #### FIRE OR EXPLOSION - EXTREMELY FLAMMABLE. - Will be easily ignited by heat, sparks or flames. - · Will form explosive mixtures with air. - Vapors from liquefied gas are initially heavier than air and spread along ground. CAUTION: Natural Gas / Methane (UN1971) is lighter than air and will rise. Natural Gas/Methane (UN1971) fires are difficult to detect since they burn with an invisible flame. Use an alternate method of detection (thermal camera, broom, etc.) - Vapors may travel to source of ignition and flash back. - Cylinders exposed to fire may vent and release flammable gas through pressure relief devices. - Containers may explode when heated. - Ruptured cylinders may rocket. #### HEALTH - Vapors may cause dizziness or asphyxiation without warning. - Some may be irritating if inhaled at high concentrations. - Contact with gas or liquefied gas may cause burns, severe injury and/or frostbite. - Fire may produce irritating and/or toxic gases. #### **PUBLIC SAFETY** - Approach cautiously. - Establish an effective and safe perimeter. - Position apparatus out of danger zone (avoid front of building and over manhole covers and sewers). - Keep unauthorized personnel away. - · Secure the scene and deny entry. #### **EVACUATION** - Evacuate the public to a safe distance - As soon as possible, contact the gas operator and coordinate large scale evacuations. - DOT ERG 115 recommends initial isolation distance of at least 100 meters (330 feet) in all directions. - Pipeline operators, however, upon assessment at
arrival may recommend a greater evacuation distance. #### **EMERGENCY RESPONSE** - Wear positive pressure self-contained breathing apparatus (SCBA) as well as full structural firefighter protective clothing. - O Structural firefighters' protective clothing will only provide limited thermal protection - Listen for hissing sound, but use CAUTION as no noise may be heard. - Monitor the atmosphere, using multiple monitors where possible - Action Criteria: 0 to 10% of the LEL Use Extreme Caution - O Action Criteria: 10% of the LEL or greater DO NOT ENTER THE BUILDING - If possible, determine the source of the release without risk to the responders. Multiple locations are possible due to damage or pullout at joints. - Monitor for natural gas traveling away from source toward exposures. - Control ignition sources (smoking, open flames, internal combustion engines and motors). - Do not operate electric devices such as switches, etc. Sparks can cause ignition. - Be cautious of contacting the piping system; a static spark may occur and result in ignition. - Whenever possible, adopt a defensive or non-intervention mode and wait for the utility company to arrive. - Protect exposures from the radiant heat of the fire. - Never extinguish the fire until the leak can be shut off and controlled, unless there is immediate danger to life. - With any leak, always anticipate and expect that ignition will occur. #### TACTICAL CONSIDERATIONS - Natural gas released inside buildings presents one of the greatest flammable hazards to emergency responders. - Building full of natural gas should only be approached when needed with extreme caution and with a minimum number of personnel. CGI readings in excess of 10% LEL require evacuation of the building. - Stop or control the gas release at the appliance, or service meter valve. - If possible to do safely, ventilate the area. If the flammable atmosphere is above the upper explosive limit (UEL), keep in mind that during ventilation the atmosphere will pass back through the flammable range of 4% to 16% gas to air. Also remember that fans are a potential ignition source. - Natural gas, depending on the makeup, requires a minimum mixture of 4% to 16% in air to ignite (40,000 ppm. to 160,000 ppm) - NOTE: Odor can be detected as low as 1 ppm. However, if underground migration occurs, odorant may be stripped from the gas. - NORMALLY, DO NOT EXTINGUISH A LEAKING GAS FIRE UNLESS LEAK CAN BE STOPPED. Extinguish surrounding fires, but not gas fed fire. - Use protective hose streams to approach if necessary. - DO NOT CLOSE main valves or any other large transmission or distribution vales. This can lead to serious problems elsewhere in the system. - Closed valves should remain closed until opened by gas utility personnel. - Do not squeeze off gas piping static electricity may cause ignition. #### FIRST AID - Move victim to fresh air. - Call 911 or emergency medical service. - Assess the victim to determine if he/she is breathing normally. The level of treatment provided should be based on your level of individual training. - Professional Rescuers provide artificial respirations if the victim is in respiratory distress. - Non-Professional Rescuers begin CPR if the victim is not breathing normally - Administer oxygen if breathing is difficult. - Remove and isolate contaminated clothing and shoes. - In case of burns, immediately cool affected skin for as long as possible with cold water. Do not remove clothing if adhering to skin. - Keep victim warm and quiet. - Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves. #### OTHER CONSIDERATIONS - Decontaminate if necessary to remove the odorant. - Debrief all responders and schedule a critique with all involved. ## **Additional Resources** #### **Pipeline Member Contact Directory** If you want additional information, the complete member directory is available at: http://www.pipelineawareness.org/about/members-list/ This listing can be filtered by state and county to include only the members in your area. It can also be downloaded in PDF format and includes both emergency and non-emergency contact information. #### Pipelines Nearby – Mobile Friendly Web Application This application is available both on the web and from mobile devices. If you are using a GPS enabled device, it will take the coordinates from your mobile phone and render information for the five participating member pipelines closest to that location (only pipelines provided to us). It can be accessed at: www.pipelinesnearby.org #### **Emergency Response Capabilities Database and Web Application** To enhance our mutual response, the website has a section to capture and display Emergency Response Capabilities for both First Responders and Pipeline Operators. Please logon to register your agency's capabilities and the results will be accessible to all organizations: http://capabilities.pipelineawareness.org #### **Emergency Responder Training Videos** Use this series of Pipeline Emergency Response videos to learn about strategic considerations when responding to a pipeline release in your community. The complete series can be accessed at http://www.pipelineawareness.org/er-videos/ #### Online Interactive Scenarios and Training Aids Access a library of interactive training scenarios to apply your knowledge and solve problems. The training materials include: interactive training scenarios, training videos, a PPT presentation based on the Pipeline Emergency Response Guidelines booklet, instructors guide, and practice test. These resources may be accessed at: http://www.pipelineawareness.org/welcome-governmentand-emergency-officials/ http://pipelineawareness.org/welcome-government-and-emergency-officials/ #### Responding to Utility Emergencies - Online Course This online course is designed to help first responders and community officials recognize the potential hazards involving natural gas. Certificates are provided for successfully completing the course. The web address is https://papa.rtueonline.com #### Pipeline Emergencies Second Edition - Online Course This curriculum is provided by the National Association of State Fire Marshalls. The online book contains extensive background information about various types of liquid and gas pipeline facilities. The online book and other training materials can be accessed here: www.pipelineemergencies.com #### National Emergency Number Association (NENA) Pipeline Emergency Operations Standard/Model Recommendation Document 56-007 This Standard is intended to aid Public Safety Answering Points (PSAP) in the development and implementation of emergency communications protocols pertaining to pipeline emergencies. The web address is http://www.nena.org/ # NFPA 329: Recommended Practice for Handling Releases of Flammable and Combustible Liquids and Gases This recommended practice outlines the appropriate methods for responding to fire, explosion, and human health hazards resulting from the release of a flammable, combustible, or otherwise hazardous liquid, gas, or vapor that may migrate to a subsurface structure. It incorporates provisions from NFPA 328: Recommended Practice for the Control of Flammable and Combustible Liquids and Gases in Manholes, Sewers, and Similar Underground Structures. This resource may be accessed at: http://www.nfpa.org/codes-and-standards/document-information-pages?mode=code&code=329 # Guide for Communicating Emergency Response Information for Natural Gas and Hazardous Liquids Pipelines The Transportation Research Board's Hazardous Materials Cooperative Research Program (HMCRP) recently released Report 14: Guide for Communicating Emergency Response Information for Natural Gas and Hazardous Liquids Pipelines. This report provides guidance on responding to a pipeline emergency. ## **Emergency Response Capabilities** The Emergency Response Capabilities Database & Reporting Tool is a free, web-based resource developed to enhance emergency preparedness and response planning in communities with pipeline infrastructure. The application can be accessed by going to www.capabilities.pipelineawareness.org Please submit information regarding your organization's response capabilities by completing the following form. The information will be added to the database and will be included in the online reports. The email information you enter on this form will be used as your initial username and password. Once the information has been submitted, you will receive a confirmation e-mail to verify that the capabilities have been added to the online system. Please e-mail the completed form to pipeline.associaton@pipelineawareness.info mail to 16361 Table Mountain Parkway, Golden, Colorado 80403, or fax to 720-446-2960. | Organization Inforn | nation | | | | |----------------------------
--|------------|------------------|--| | Organization Name: | | | | | | Contact Name: | | | | -1 1 , -1 . | | Contact Email: | | | |
 | | Contact Phone: | | | | | | Organization Type: | CEMA or LEPC | | Hazmat Unit | PSAP or 911 Center | | | EMS Department | | Pipeline Company | Sheriff Department | | | Fire Department | | Police Company | State Police or Highway Patrol | | Organization Locat | ion | | | | | | A STATE OF THE PARTY PAR | | | You can enter up to two states with footprint includes more than three | | State: | C | Counties:_ | | 1 = -1, | | | | | | | | State: | 0 | Counties: | 16361 Table Mountain Parkw | ay, Golden, Colorado 80 |)403 | | www.pipelineawareness.org | ## **Emergency Response Capabilities** ## Capabilities Select all items that apply to your organization | Pers | onnel have: | Responding units carry: | | | | | | |------|--|-------------------------|--|--|--|--|--| | | training on the Incident Command System (ICS) | | DOT Emergency Response Guidebook (ERG) | | | | | | | training on the National Incident Management | | other response plans or procedures | | | | | | | System (NIMS) | | listing of emergency contacts for their area | | | | | | | training on the DOT Emergency Response
Guidebook (ERG) | | flares or other traffic control devices | | | | | | | taken HAZWOPER 1ST Responder Awareness | | instruments to detect Natural Gas (methane) | | | | | | | Level training | | instruments to detect Propane (hydrocarbons) | | | | | | | taken HAZWOPER 1ST Responder Operations
Level II training | | instruments to detect Hydrogen Sulfide (H2S) | | | | | | | • | | instruments to monitor Oxygen levels | | | | | | | taken a HAZWOPER 24 or 40 Hour Course | | instruments to detect Carbon Monoxide (CO) | | | | | | | reviewed the NASFM Pipeline Emergencies Training | П | 800 trunking radios | | | | | | | reviewed the PAPA Pipeline Emergency
Response Scenarios | | computer or mobile on scene internet access | | | | | | | participated in pipeline emergency mock exercises or drills | | dry chemical (Class BC) hand held fire extinguishers | | | | | | | responded to an actual gas leak in a building | Coo | perative agreements are in place to: | | | | | | | responded to an actual pipeline emergency | | dispatch Hazmat Units | | | | | | | certification for Level 1 First Aid | | deploy containment devices | | | | | | | certification for Emergency Medical Technician (EMT) | | deploy absorbent materials | | | | | | | operations Level Certification under NFPA 472 | | deploy earth moving equipment | | | | | | | knowledge of the practices in NFPA 329 | Res | ponding Units can: | | | | | | - | accessed the National Pipeline Mapping System | | deploy foam | | | | | ### **INCIDENT RESPONSE CHECKLIST** Pipeline operators will concentrate on shutting down pipeline facilities. Responders should focus on protecting the public and isolating or removing ignition sources. | Should | rocus on protecting the public and isolating or removing ignition | |---------|---| | 1. ASSE | ESS THE SITUATION | | | Approach with caution from upwind/crosswind location | | | Do not walk or drive into a vapor cloud or puddle of liquid | | | Do not park over manhole or storm drain | | | Use air-monitoring equipment | | | Note conditions of hazard, weather, surrounding community
and available resources | | | Secure the scene, denying entry to unauthorized persons | | | Employ NIMS and Incident Command System | | | Identify hazards | | | Locate pipeline marker sign: product, operator, | | | 24-hour emergency phone number | | | Contact pipeline operator | | | Refer to DOT Emergency Response Guidebook | | 2. PRO | TECT PEOPLE, PROPERTY AND THE ENVIRONMENT | | | Establish isolation zones and set up barricades | | | Rescue and evacuate people | | | Evacuate or shelter-in-place | | | Administer first-aid | | | Eliminate ignition sources | | | Control fire, vapor and/or leak | | | Let primary fire burn | | | Cool surrounding structures | | | Beware hot spot re-ignition | | 3. CALL | FOR ASSISTANCE OF TRAINED PERSONNEL | | | Contact your organization | | Ö | Call the pipeline operator | 4. WORK TOGETHER WITH THE PIPELINE OPERATOR Pipeline Association for Public Awareness • 16361 Table Mountain Parkway • Golden, CO 80403 www.pipelineawareness.org