Assessing Pipeline Integrity: In-Line Inspection Technologies and Capabilities

Sergio Limón-Tapia
Mgr. Pipeline Integrity Group
Williams Gas Pipeline-West

Washington State Citizens Committee on Pipeline Safety
September 14, 2011
Olympia, WA
Outline

> Why an In-Line Inspection (ILI)/Pigging Program?
> What does it take to Run ILI Tools
> In-line Inspections Technologies and Integrity Threats
> Why an ILI Validation Performance?
> Summary
Why an In-Line Inspection/Pigging Program?

- To maintain and demonstrate the Safety, Integrity and Reliability of pipeline systems
- To meet compliance with applicable regulations
- In-line inspection technologies are an integral part of our system-wide pipeline integrity management program
- ILI assessment provide additional information about the condition of pipeline
 - when line segments can’t be reasonably made piggable, hydrostatic testing and direct assessment are other acceptable assessment options

Prioritizing Pipeline Segments to be In-Line Inspected
- Based on Threat Analysis and Risk = Likelihood x Consequence
- Assess impact to Safety, Reliability, Compliance & Customers

The Phases of a Pigging Program
- Make pipeline segment piggable
- Run ILI tools and mitigate areas of concern
- Establish appropriate re-inspection intervals
Running In-Line Inspection Tools

> Installing launchers and receivers
> Removing pipeline obstructions
 - Reduced port valves, tight fittings and bends, unbarred tees/take offs
> Setting up above ground markers (AGMs)
 - 1-3 miles apart
> Setting up a safe and appropriate driving route for tracking purposes
> Setting up the tracking boxes at the AGM sites
> Develop a work plan and gas handling procedure with Operations
Core ILI Technologies

- Caliper/Geometry & Inertia Mapping Unit
- Magnetic Flux Leakage (MFL) Axial & Circumferential
- Ultrasound and ElectroMagnetic Acoustic Transducers (EMAT)

- Deformation & X-Y-Z
- Corrosion
- Crack-like Indications

Standard Suite of ILI Tools

- Gauge Plate
- Brush Pig
- Geometry
- MFL

© 2011 Williams Partners L.P. All rights reserved.
Major North America ILI Vendors

Additional In-Line Inspection Resources

> Pigging Products & Services Association http://www.ppsa-online.com/
> Standards
 – API 1163 “In-Line Inspection System Qualification”
Core ILI Technologies & Integrity Threats

<table>
<thead>
<tr>
<th>Caliper & Geometry</th>
<th>MFL & C-MFL</th>
<th>Ultrasound & EMAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dents</td>
<td>Internal & External Corrosion</td>
<td>Stress Corrosion Cracking</td>
</tr>
<tr>
<td>Ovality</td>
<td>Gouges & Scratches</td>
<td>Tow Cracking</td>
</tr>
<tr>
<td>Wrinkle Bends & Buckles</td>
<td>Selective Seam Corrosion (C-MFL)</td>
<td>Hydrogen Induced Cracking</td>
</tr>
<tr>
<td>Pipeline X-Y-Z with IMU</td>
<td>Seam Weld (C-MFL)</td>
<td>Laminations</td>
</tr>
<tr>
<td>Bend Radius & Angle</td>
<td>Girth Welds (MFL & C-MFL)</td>
<td>Linear Crack-like and</td>
</tr>
<tr>
<td></td>
<td>Seam Weld Defects (C-MFL)</td>
<td>Manufacturing Indications</td>
</tr>
<tr>
<td></td>
<td>Previous Repairs with Metal Banding</td>
<td>Internal & External Corrosion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2011 Williams Partners L.P. All rights reserved.
Magnetic Flux Leakage Technology

Magnetic Flux Leakage Behavior across a Pipeline Wall

Sources: Tuboscope & GE-PII
<table>
<thead>
<tr>
<th>Year Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>~1964 First</td>
<td>First Commercial MFL</td>
</tr>
<tr>
<td>Commercial</td>
<td>• 90-degree tool</td>
</tr>
<tr>
<td>MFL</td>
<td>• No odometer</td>
</tr>
<tr>
<td></td>
<td>• Survey logs displayed on BW photographic paper (1-joint: 3/4”)</td>
</tr>
<tr>
<td></td>
<td>• Only most significant anomalies reported</td>
</tr>
<tr>
<td></td>
<td>• Difficult to determine if anomalies were metal loss or gain</td>
</tr>
<tr>
<td></td>
<td>• No POD or POI</td>
</tr>
<tr>
<td>1966-71 Full</td>
<td>Full Circumference MFL</td>
</tr>
<tr>
<td>Circumference</td>
<td>• With odometer</td>
</tr>
<tr>
<td>MFL</td>
<td>• Survey logs displayed on BW photographic paper (1-joint: 3/4”)</td>
</tr>
<tr>
<td></td>
<td>• Anomalies graded in 3 categories (< 30%, 30-50% and > 50% WT)</td>
</tr>
<tr>
<td></td>
<td>• Low resolution</td>
</tr>
<tr>
<td></td>
<td>• No POD or POI</td>
</tr>
<tr>
<td>1978-86 HR</td>
<td>HR Circumference MFL</td>
</tr>
<tr>
<td>Circumference</td>
<td>• With odometer, speed, orientation measurements</td>
</tr>
<tr>
<td>MFL</td>
<td>• Survey logs displayed on computer software</td>
</tr>
<tr>
<td></td>
<td>• Probability of 80% and sizing 20% WT</td>
</tr>
<tr>
<td></td>
<td>• High resolution</td>
</tr>
<tr>
<td>1990, 2000 and</td>
<td>Beyond…</td>
</tr>
<tr>
<td>Beyond…</td>
<td>• With odometer, x-y-z orientation, GIS, speed control module</td>
</tr>
<tr>
<td></td>
<td>• Multi-diameter, tethered with Caliper/Geometry tools</td>
</tr>
<tr>
<td></td>
<td>• Survey logs displayed on advanced computer software</td>
</tr>
<tr>
<td></td>
<td>• POD of 80% and sizing 10% WT</td>
</tr>
</tbody>
</table>

Sources: Tuboscope & GE-PII
MFL Technology Today

- MFL technology is a mature process
- Feedback loop to ILI providers for continuous improvement
Multiple MFL Runs

Sample A

Growth of 35%
(0.4 mm/yr)

Sample B

New Corrosion
(Growth of 35%)

Repair

2004

2007

2004

2007
Caliper/Geometry Tools
Laser Scanning of Dents

High Resolution External Surface Laser Mapping of Dents
ILI & Laser Mapping Comparison
Crack Detection Tools

Electromagnetic Acoustic Technology

Electromagnetic Acoustic Technology does not need liquid coupling

Ultrasound Technology

Ultrasound Technology requires liquid coupling
EMAT Users Group
Why an ILI Validation Performance?

> Because there are inherent uncertainties with the technologies
 > Uncertainties need to be understood and properly accounted for

> Because the “largest defect that an inspection tool can miss is more important than the smallest defect the tool can find”

> Because not all indications reported by the ILI tools need to be excavated
 > Determine a high level of confidence that those indications not excavated will not pose a safety concern until the next re-inspection interval

> To determine and document that the ILI tools performed within their stated specifications
 > sizing (depth & length), type of feature, predicted burst pressure, etc

Summary

- We all share a common goal: **zero incidents**
- Pipeline industry strong commitment to safety
- In-line inspection technologies are an integral part of our system-wide pipeline integrity management program
- We continue to experience great success with the ILI Tools/Analyst process
- An ILI performance validation program is essential
 - To understand and account for the uncertainties inherent in the process: *Tools/Analyst*
 - To assist with the appropriate Prioritization-Response-Remediation
Ingenuity takes energy.™